(
Magic mushrooms may be help in the treatment of achromatopsia &Nyctalopia
دکتر یزدان نیاز :ادعای درمان کور رنگی با قارچ جادویی برای اولین بار است که در جهان مطرح گردیده است و تاکنون هیچ مرکزی در جهان در این مورد تحقیقی نکرده است و تاکنون هیچ مقاله ای در این باره منتشر نشده است و مدعی این درمان که من هستم باید تا چند سال دیگر صبر کنم که مراکز دانشگاهی خارج از کشور روی این درمان تحقیق و انرا تائید و به نام خود منتشر کنند
این درمان بر اساس تئوری وجود گیرنده ای سروتونین در طبقه retinal ganglion cells نتایج تحقیقات شخصی من است و اطمینان دارم هیچ چشم پزشکی انرا باور نخواهد کرد .
.البته برای اثبات کامل این تئوری که ادعای باور نکردنی در جهان است نیازمند به ازمایشات بیشتری بر روی حیوانات هستیم اما در ظرف دو سال گذشته طبق تجربیات شخصی و بررسی بر روی یک بیمار کور رنگ که با استفاده از سیلوسایبین شفا یافته است و اطلاعات کاملی که در مورد اثرات سیلوسایبین دارم به طور حتم یقین به درمان کور رنگی بسیار نزدیک شدیم
خلاصه مقاله
سیلوسایبین در دوز کم و مدت طولانی ( چهار ماه) با افزایش پلاستسیته و ایجاد اتصالات نورونی جدید از طریق دندریت سلول اماکرین در طبقه retinal ganglion cellsچشم گیرنده های ناقص نور های رنگی را به هم و به طبقه گانگیون شبکیه اتصال داده و چون سیلوسایبین از دسته الکالوئید های ایندول و دارای خاصیت ماورای بنفش در طول موج (315-400nm) است می تواند با تغییر فرکانس نور در گیرندهای مخروطی باعث افزایش سویج کردن سلولهای اماکرین درانتقال نور رنگی از طریق سلول های retinal ganglion cells به مغز باعث درک رنگ قرمز توسط مغز شود و درمان بیماران کور رنگ به خصوص کسانی که قادر به دیدن نور قرمز نیستند بسیار موثر است
مقدمه
قارچ جادویی می تواند در درمان کور رنگی مادرزادی کمک کند .
کوررنگی یک بیماری ارثی است و اکثر انواع آن وابسته به کروموزوم X هستند. به این علت در اقایان بعلت وجود یک کرموزم X شیوع کوررنگی بیشتر از زنان است، ژن کور رنگی بر روی کرموزم ایکس است به این علت زنان چون دارای کروموزم XX هستند که از والدین می گیرند زنان زمانی دچار کور رنگی می شوند که ژن ایکس معیوب را از هر دو والد دریافت کند
کور رنگی چیست .
سلول های شبکیه چشم که مسئول بینایی هستند دارای دو دسته کاملا متمایز هستند
سلول های استوانه ای که فقط قادر به تشخصی نور غیر رنگی هستند
سلول های مخروطی سلول های هستند که رنگ ها را تشخیص می دهند
سلولهای مخروطی نوعی از سلولهای گیرندهٔ نور هستند که در شبکیه قرار دارند. این سلولها بر اساس تحریکپذیری خود نسبت طول موجهای مختلف نور بر سه دسته تقسیم میشوند:
کوررنگی انواع مختلفی دارد که شایعترین آنها عدم توانایی در تشخیص رنگ سبز و قرمز از یکدیگر است. عدم تشخیص هیچیک از رنگها یکی از گونههای بسیار نادر کوررنگی است، و در آن فرد اشیاء را همچون در فیلمها و یا عکسهای سیاه و سفید میبیند.
بررسی عصبی شبکیه چشم
زمانی که نور به شبکیه بر خورد می کند توسط سلول های مخروطی و استوانه ای دریافت می شود انها تحریک را به سلول های عصبی دو قطبی منتقل می کنند و سر انچام پیام به سلول های به نام سلول های گانگلیون شبکیه retinal ganglion cells منتقل تا به مغز برسد
چهار نوع از سلول های عصبی در شبکیه هستند که در انتقال نور فعالند
سلول های دو قطبی
سلول های گانگلیونی،
سلول های افقی
سلول های اماکرین amacrine
گیرنده های سروتونین در شبکیه
حدود 33 فرم مختلف از سلول عصبی اماکرین در شبکیه یافت شده است سلول عصبی اماکرین در واقع دندریت هستند و اکسون ندارند و هر سلول اماکرین ارتباط مشخصی بین سلول های دو قطبی و سلول گانگلیونیک دارد
بوسیله رنگ امیزی انتی بادی ضد سرتونین تاکنون دو نوع گیرنده سروتونین در سلول اماکرین در خرگوش تشخیص داده شده است .
ادامه دارد پایان قسمت اول
زیر نویس
سلول آماکرین (انگلیسی: Amacrine cell) گروهی از سلولهای عصبی تحریک شونده (اینترنورون) در شبکیه چشم هستند که فاقد آکسون میباشند. این سلولها اصولاً نقش مهاری بر روی سایر نورونهای چشم را دارند و میانجیهای عصبی مانند گابا و گلیسین آزاد می کنند.
سلول های افقی
Illumination Center photoreceptor hyperpolarization horizontal cell hyperpolarization Surround photoreceptor depolarization
کار این سلول ها
منابع
Magic mushrooms may be help in the treatment of achromatopsia &Nyctalopia
دکتر یزدان نیاز :ادعای درمان کور رنگی با قارچ جادویی برای اولین بار است که در جهان مطرح گردیده است و تاکنون هیچ مرکزی در جهان در این مورد تحقیقی نکرده است و تاکنون هیچ مقاله ای در این باره منتشر نشده است و مدعی این درمان که من هستم باید تا چند سال دیگر صبر کنم که مراکز دانشگاهی خارج از کشور روی این درمان تحقیق و انرا تائید و به نام خود منتشر کنند
این درمان بر اساس تئوری وجود گیرنده ای سروتونین در طبقه retinal ganglion cells نتایج تحقیقات شخصی من است و اطمینان دارم هیچ چشم پزشکی انرا باور نخواهد کرد .
.البته برای اثبات کامل این تئوری که ادعای باور نکردنی در جهان است نیازمند به ازمایشات بیشتری بر روی حیوانات هستیم اما در ظرف دو سال گذشته طبق تجربیات شخصی و بررسی بر روی یک بیمار کور رنگ که با استفاده از سیلوسایبین شفا یافته است و اطلاعات کاملی که در مورد اثرات سیلوسایبین دارم به طور حتم یقین به درمان کور رنگی بسیار نزدیک شدیم
خلاصه مقاله
سیلوسایبین در دوز کم و مدت طولانی ( چهار ماه) با افزایش پلاستسیته و ایجاد اتصالات نورونی جدید از طریق دندریت سلول اماکرین در طبقه retinal ganglion cellsچشم گیرنده های ناقص نور های رنگی را به هم و به طبقه گانگیون شبکیه اتصال داده و چون سیلوسایبین از دسته الکالوئید های ایندول و دارای خاصیت ماورای بنفش در طول موج (315-400nm) است می تواند با تغییر فرکانس نور در گیرندهای مخروطی باعث افزایش سویج کردن سلولهای اماکرین درانتقال نور رنگی از طریق سلول های retinal ganglion cells به مغز باعث درک رنگ قرمز توسط مغز شود و درمان بیماران کور رنگ به خصوص کسانی که قادر به دیدن نور قرمز نیستند بسیار موثر است
مقدمه
قارچ جادویی می تواند در درمان کور رنگی مادرزادی کمک کند .
کوررنگی یک بیماری ارثی است و اکثر انواع آن وابسته به کروموزوم X هستند. به این علت در اقایان بعلت وجود یک کرموزم X شیوع کوررنگی بیشتر از زنان است، ژن کور رنگی بر روی کرموزم ایکس است به این علت زنان چون دارای کروموزم XX هستند که از والدین می گیرند زنان زمانی دچار کور رنگی می شوند که ژن ایکس معیوب را از هر دو والد دریافت کند
کور رنگی چیست .
سلول های شبکیه چشم که مسئول بینایی هستند دارای دو دسته کاملا متمایز هستند
سلول های استوانه ای که فقط قادر به تشخصی نور غیر رنگی هستند
سلول های مخروطی سلول های هستند که رنگ ها را تشخیص می دهند
سلولهای مخروطی نوعی از سلولهای گیرندهٔ نور هستند که در شبکیه قرار دارند. این سلولها بر اساس تحریکپذیری خود نسبت طول موجهای مختلف نور بر سه دسته تقسیم میشوند:
- سلولهای مخروطی نوع S، که نسبت به طول موجهای کوتاه (حدود ۴۲۰ نانومتر) حساسیت بیشتری نشان میدهند و موجب دیدن رنگ آبی میشوند.
- سلولهای مخروطی نوع M، که نسبت به طول موجهای متوسط (حدود ۵۳۰ نانومتر) حساسیت بیشتری نشان میدهند و موجب دیدن رنگ سبز میشوند.
- سلولهای مخروطی نوع L، که نسبت به طول موجهای بلند (حدود ۵۶۰ نانومتر) حساسیت بیشتری نشان میدهند و موجب دیدن رنگ قرمز و زرد میشوند.
کوررنگی انواع مختلفی دارد که شایعترین آنها عدم توانایی در تشخیص رنگ سبز و قرمز از یکدیگر است. عدم تشخیص هیچیک از رنگها یکی از گونههای بسیار نادر کوررنگی است، و در آن فرد اشیاء را همچون در فیلمها و یا عکسهای سیاه و سفید میبیند.
تکرنگبینی
تکرنگبینی Monochromacy و یا کوررنگی کامل نوع نادری از این اختلال است که در آن هیچیک از انواع سلولهای مخروطی فعال نیستند و فرد قادر به تشخیص هیچ رنگی نیست.دورنگبینی
دورنگبینی Dichromacy در صورتی ایجاد میشود که یکی از سه نوع سلول مخروطی فاقد رنگدانه باشد. گونهها:- سرخکوری protanopia اختلالی در تشخیص رنگ که در آن فرد مبتلا توانایی تشخیص رنگ سرخ را از زرد و سبز ندارد. در این صورت فرد رنگ سرخ را تیره و مایل به سبز میبیند.
- سبزکوری deuteranopia اختلالی در تشخیص رنگ که در آن فرد مبتلا توانایی تشخیص رنگ سبز را از سرخ و زرد ندارد. شایعترین نوع کوررنگی است.
- آبیکوری tritanopia: اختلال نادری در تشخیص رنگ که در آن شخص مبتلا، به نور آبی حساس نیست و آبی و سبز را با هم اشتباه میکند.
سهرنگبینی نابهنجار
سهرنگبینی نابهنجار یکی از انواع شایع کوررنگی است که در آن هر سه نوع سلول مخروطی فعال هستند ولی در اثر جهش، تحریکپذیری یکی از آنها نسبت به طیف نور تغییر یافتهاست.- سرخدشواربینی Protanomaly: یکی از این حالات است که حساسیت گیرندههای رنگ قرمز تغییر مییابد و تشخیص دو رنگ قرمز و سبز (زیرا طول موجهایشان به هم نزدیکتر است) را برای فرد دشوار میکند.
- سبزدشواربینی Deuteranomaly: نوع بسیار شایعی از کوررنگی است که در آن تشخیص دو رنگ قرمز و سبز به علت کاهش حساسیت گیرندههای رنگ سبز دشوار میشود.
- آبیدشواربینی Tritanomaly: نوع نادری است که در آن حساسیت سلولهای مخروطی فرد نسبت به رنگ آبی کاهش مییابد و فرد در تشخیص رنگهای زرد و آبی دچار مشکل میشود. برخلاف سایر گونهها، آبیدشواربینی وابسته به جنس نیست و تعداد زنان و مردان مبتلا به آن همسان است.
بررسی عصبی شبکیه چشم
زمانی که نور به شبکیه بر خورد می کند توسط سلول های مخروطی و استوانه ای دریافت می شود انها تحریک را به سلول های عصبی دو قطبی منتقل می کنند و سر انچام پیام به سلول های به نام سلول های گانگلیون شبکیه retinal ganglion cells منتقل تا به مغز برسد
چهار نوع از سلول های عصبی در شبکیه هستند که در انتقال نور فعالند
سلول های دو قطبی
سلول های گانگلیونی،
سلول های افقی
سلول های اماکرین amacrine
گیرنده های سروتونین در شبکیه
حدود 33 فرم مختلف از سلول عصبی اماکرین در شبکیه یافت شده است سلول عصبی اماکرین در واقع دندریت هستند و اکسون ندارند و هر سلول اماکرین ارتباط مشخصی بین سلول های دو قطبی و سلول گانگلیونیک دارد
بوسیله رنگ امیزی انتی بادی ضد سرتونین تاکنون دو نوع گیرنده سروتونین در سلول اماکرین در خرگوش تشخیص داده شده است .
ادامه دارد پایان قسمت اول
زیر نویس
سلول آماکرین (انگلیسی: Amacrine cell) گروهی از سلولهای عصبی تحریک شونده (اینترنورون) در شبکیه چشم هستند که فاقد آکسون میباشند. این سلولها اصولاً نقش مهاری بر روی سایر نورونهای چشم را دارند و میانجیهای عصبی مانند گابا و گلیسین آزاد می کنند.
سلول های افقی
Illumination Center photoreceptor hyperpolarization horizontal cell hyperpolarization Surround photoreceptor depolarization
کار این سلول ها
منابع
1. Werblin, FS and JE Dowling, Organization of the retina of the mudpuppy, Necturus maculosus. II. Intracellular recording. J Neurophysiol, 1969. 32 (3): p. 339-55. [ PubMed ]
2. Kuffler, SW, Discharge patterns and functional organization of mammalian retina. J Neurophysiol, 1953. 16 (1): p. 37-68.
3. Protti, DA, N. Flores-Herr, and H. von Gersdorff, Light evokes Ca 2+ spikes in the axon terminal of a retinal bipolar cell. Neuron, 2000. 25 (1): p. 215-27.
4. Dreosti, E., et al., In vivo evidence that retinal bipolar cells generate spikes modulated by light. Nat Neurosci, 2011. 14 (8): p. 951-2.
5. Saszik, S. and SH DeVries, A Mammalian Retinal Bipolar Cell Uses Both Graded Changes in Membrane Voltage and All-or-Nothing Na + Spikes to Encode Light J Neurosci, 2012. 32 (1): p. 297-307.
6. Connaughton, VP, D. Graham, and R. Nelson, Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. Journal of Comparative Neurology, 2004. 477 : p. 371-385.
7. Euler, T., H. Schneider, and H. Wässle, Glutamate responses of bipolar cells in a slice preparation of the rat retina. J Neurosci, 1996. 16 (9): p. 2934-44. [ PubMed ]
8. Kolb, H., R. Nelson, and A. Mariani, Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Res, 1981. 21 (7): p. 1081-1114. [ PubMed ]
9. Wässle, H. and BB Boycott, Functional architecture of the mammalian retina. Physiol Rev, 1991. 71 (2): p. 447-80.
10. West, RW, Light and electron microscopy of the ground squirrel retina: functional considerations. J Comp Neurol, 1976. 168 (3): p. 355-77.
11. Wu, SM, F. Gao, and BR Maple, Functional architecture of synapses in the inner retina: segregation of visual signals by stratification of bipolar cell axon terminals. J Neurosci, 2000. 20 (12): p. 4462-70. [ PubMed ]
12. Wu, SM, Synaptic organization of the vertebrate retina: general principles and species-specific variations: the Friedenwald lecture. Invest Ophthalmol Vis Sci, 2010. 51 (3): p. 1263-74.
13. Boycott, BB and H. Wässle, Morphological Classification of Bipolar Cells of the Primate Retina. Eur J Neurosci, 1991. 3 (11): p. 1069-1088.
14. Ishida, AT, WK Stell, and DO Lightfoot, Rod and cone inputs to bipolar cells in goldfish retina. J Comp Neurol, 1980. 191 (3): p. 315-35. [ PubMed ]
15. Li, W. and SH DeVries, Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nat Neurosci, 2006. 9 (5): p. 669-75.
16. MacNeil, MA and PA Gaul, Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones. J Comp Neurol, 2008. 506 (1): p. 6-15.
17. Mariani, AP, The neuronal organization of the outer plexiform layer of the primate retina. Int Rev Cytol, 1984. 86 : p. 285-320.
18. Marshak, DW, et al., Localization of immunoreactive cholecystokinin precursor to amacrine cells and bipolar cells of the macaque monkey retina. J Neurosci, 1990. 10 (9): p. 3045-55.
19. Scholes, JH, Colour receptors, and their synaptic connexions, in the retina of a cyprinid fish. Philos Trans R Soc Lond B Biol Sci, 1975. 270 (902): p. 61-118. [ PubMed ]
20. Kolb, H., Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Philosophical Transactions of the Royal Society, London, B, 1970. 258 : p. 261-283.
21. Ayoub, GS and DR Copenhagen, Application of a fluorometric method to measure glutamate release from single retinal photoreceptors. J Neurosci Methods, 1991. 37 (1): p. 7-14. [ PubMed ]
22. Nelson, R., A comparison of electrical properties of neurons in Necturus retina. J Neurophysiol, 1973. 36 (3): p. 519-535. [ PubMed ]
23. Toyoda, J., Membrane resistance changes underlying the bipolar cell response in the carp retina. Vision Res, 1973. 13 (2): p. 283-94. [ PubMed ]
24. Dacheux, RF and RF Miller, Photoreceptor-bipolar cell transmission in the perfused retina eyecup of the mudpuppy. Science, 1976. 191 (4230): p. 963-4. [ PubMed ]
25. Lasansky, A., Properties of depolarizing bipolar cell responses to central illumination in salamander retinal slices. Brain Res, 1992. 576 (2): p. 181-96. [ PubMed ]
26. Hirasawa, H., R. Shiells, and M. Yamada, A metabotropic glutamate receptor regulates transmitter release from cone presynaptic terminals in carp retinal slices. J Gen Physiol, 2002. 119 (1): p. 55-68. [ PubMed ]
27. Awatramani, GB and MM Slaughter, Intensity-dependent, rapid activation of presynaptic metabotropic glutamate receptors at a central synapse. J Neurosci, 2001. 21 (2): p. 741-9. [ PubMed ]
28. Slaughter, MM and RF Miller, 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science, 1981. 211 (4478): p. 182-5. [ PubMed ]
29. Nakajima, Y., et al., Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem, 1993. 268 (16): p. 11868-73. [ PubMed ]
30. Nomura, A., et al., Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell, 1994. 77 (3): p. 361-9. [ PubMed ]
31. Masu, M., et al., Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell, 1995. 80 (5): p. 757-65. [ PubMed ]
32. Vardi, N., et al., Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. J Comp Neurol, 2000. 423 (3): p. 402-412.
33. Vardi, N., Alpha subunit of G o localizes in the dendritic tips of ON bipolar cells. J Comp Neurol, 1998. 395 (1): p. 43-52. 43-52. [ PubMed ]
34. Dhingra, A., et al., The light response of ON bipolar neurons requires G α o . J Neurosci, 2000. 20 (24): p. 9053-8. [ PubMed ]
35. Vardi, N., et al., Identification of a G-protein in depolarizing rod bipolar cells. Vis Neurosci, 1993. 10 (3): p. 473-8. [ PubMed ]
36. Nawy, S. and CE Jahr, Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature, 1990. 346 (6281): p. 269-71. [ PubMed ]
37. Nawy, S., The metabotropic receptor mGluR6 may signal through G o , but not phosphodiesterase, in retinal bipolar cells. J Neurosci, 1999. 19 (8): p. 2938-44. [ PubMed ]
38. Koike, C., et al., TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci USA, 2010. 107 (1): p. 332-7.
39. Koike, C., et al., TRPM1: a vertebrate TRP channel responsible for retinal ON bipolar function. Cell Calcium, 2010. 48 (2-3): p. 95-101.
40. Nakamura, M., et al., TRPM1 mutations are associated with the complete form of congenital stationary night blindness. Mol Vis, 2010. 16 : p. 425-37.
41. Xu, Y. and N. Vardi, Modulation of the Light-Activated Cation Channel in Retinal ON Bipolar Cells by G-Protein Subunits. ARVO Meeting Abstracts, 2010. 51 (5): p. 4797.
42. Xu, Y., et al., mGluR6 Deletion Renders the TRPM1 Channel in Retina Inactive. J Neurophysiol, 2011.
43. Montell, C. and GM Rubin, Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron, 1989. 2 (4): p. 1313-23.
44. Myers, BR, et al., Multiple unbiased prospective screens identify TRP channels and their conserved gating elements. J Gen Physiol, 2008. 132 (5): p. 481-6.
45. Abramowitz, J. and L. Birnbaumer, Physiology and pathophysiology of canonical transient receptor potential channels. FASEB J, 2009. 23 (2): p. 297-328.
46. Montell, C., The TRP superfamily of cation channels. Sci STKE, 2005. 2005 (272): p. re3.
47. Montell, C., L. Birnbaumer, and V. Flockerzi, The TRP channels, a remarkably functional family. Cell, 2002. 108 (5): p. 595-8.
48. Nishida, M. and H. Kurose, Roles of TRP channels in the development of cardiac hypertrophy. Naunyn Schmiedebergs Arch Pharmacol, 2008. 378 (4): p. 395-406.
49. Krizaj, D., Compartmentalization of calcium entry pathways in mouse rods. Eur J Neurosci, 2005. 22 (12): p. 3292-6.
50. Ke, JB, et al., Characterization of spontaneous inhibitory postsynaptic currents in cultured rat retinal amacrine cells. Neuroscience, 2010. 165 (2): p. 395-407.
51. Sosa, R., et al., Metabotropic glutamate receptor 5 and calcium signaling in retinal amacrine cells. J Neurochem, 2002. 81 (5): p. 973-83.
52. Morgans, CW, et al., TRPM1 is required for the depolarizing light response in retinal ON-bipolar cells. Proc Natl Acad Sci USA, 2009. 106 (45): p. 19174-8.
53. Shen, Y., et al., A transient receptor potential-like channel mediates synaptic transmission in rod bipolar cells. J Neurosci, 2009. 29 (19): p. 6088-93.
54. Koike, C., et al., The functional analysis of TRPM1 in retinal bipolar cells. Neurosci Res, 2007. 58S : p. S41.
55. Morgans, CW, RL Brown, and RM Duvoisin, TRPM!: the endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells. Bioessays, 2010. 32 : p. 609-614.
56. Koyasu, T., et al., Photopic electroretinograms of mGluR6-deficient mice. Curr Eye Res, 2008. 33 (1): p. 91-9.
57. Gregg, RG, et al., Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. J Neurophysiol, 2007. 98 (5): p. 3023-33.
58. Pardue, MT, et al., A naturally occurring mouse model of X-linked congenital stationary night blindness. Invest Ophthalmol Vis Sci, 1998. 39 (12): p. 2443-9.
59. Gregg, RG, et al., Identification of the gene and the mutation responsible for the mouse nob phenotype. Invest Ophthalmol Vis Sci, 2003. 44 (1): p. 378-84.
60. Schroeter, EH, RO Wong, and RG Gregg, In vivo development of retinal ON-bipolar cell axonal terminals visualized in nyx::MYFP transgenic zebrafish. Vis Neurosci, 2006. 23 (5): p. 833-43.
61. Cao, Y., E. Posokhova, and KA Martemyanov, TRPM1 forms complexes with nyctalopin in vivo and accumulates in postsynaptic compartment of ON-bipolar neurons in mGluR6-dependent manner. J Neurosci, 2011. 31 (32): p. 11521-6.
62. van Genderen, MM, et al., Mutations in TRPM1 are a common cause of complete congenital stationary night blindness. Am J Hum Genet, 2009. 85 (5): p. 730-6.
63. Nawy, S., Regulation of the on bipolar cell mGluR6 pathway by Ca 2+ . J Neurosci, 2000. 20 (12): p. 4471-9. [ PubMed ]
64. Yamashita, M. and H. Wässle, Responses of rod bipolar cells isolated from the rat retina to the glutamate agonist 2-amino-4-phosphonobutyric acid (APB). J Neurosci, 1991. 11 (8): p. 2372-82. [ PubMed ]
65. Shiells, RA and G. Falk, A rise in intracellular Ca 2+ underlies light adaptation in dogfish retinal 'on' bipolar cells. J Physiol (Lond), 1999. 514 (Pt 2): p. 343-50.
66. Shiells, RA and G. Falk, Activation of Ca 2+ –calmodulin kinase II induces desensitization by background light in dogfish retinal 'on' bipolar cells. J Physiol, 2000. 528 Pt 2 : p. 327-38. [ PubMed ]
77. Tachibana, M. and A. Kaneko, L-glutamate-induced depolarization in solitary photoreceptors: a process that may contribute to the interaction between photoreceptors in situ. Proc Natl Acad Sci USA, 1988. 85 (14): p. 5315-9. [ PubMed ] [ Free Full text in PMC ]
78. Wersinger, E., et al., The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. J Physiol, 2006. 577 (Pt 1): p. 221-34.
79. Otis, TS and CE Jahr, Anion currents and predicted glutamate flux through a neuronal glutamate transporter. J Neurosci, 1998. 18 (18): p. 7099-110. [ PubMed ]
80. Arriza, JL, et al., Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA, 1997. 94 (8): p. 4155-60.
81. Saito, T., H. Kondo, and J. Toyoda, Ionic mechanisms of two types of on-center bipolar cells in the carp retina. II. The responses to annular illumination. J Gen Physiol, 1981. 78 (5): p. 569-89. [ PubMed ]
82. Saito, T., H. Kondo, and JI Toyoda, Ionic mechanisms of two types of on-center bipolar cells in the carp retina. I. The responses to central illumination. J Gen Physiol, 1979. 73 (1): p. 73-90.
83. Vardi, N., et al., Neurochemistry of the mammalian cone 'synaptic complex'. Vision Res, 1998. 38 (10): p. 1359-69. [ PubMed ]
84. Hughes, TE, Are there ionotropic glutamate receptors on the rod bipolar cell of the mouse retina? Vis Neurosci, 1997. 14 (1): p. 103-9. [ PubMed ]
85. Hughes, TE, I. Hermans-Borgmeyer, and S. Heinemann, Differential expression of glutamate receptor genes (GluR1-5) in the rat retina. Vis Neurosci, 1992. 8 (1): p. 49-55.
86. Nelson, R., et al., Physiological responses associated with kainate receptor immunoreactivity in dissociated zebrafish retinal neurons: a voltage probe study. Prog Brain Res, 2001. 131 : p. 255-65. [ PubMed ]
87. Peng, YW, et al., Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience, 1995. 66 (2): p. 483-97. [ PubMed ]
88. Wong, KY and JE Dowling, Retinal Bipolar Cell Input Mechanisms in Giant Danio: III. ON-OFF Bipolar Cells and Their Color-Opponent Mechanisms. J Neurophysiol, 2005. 94 (1): p. 265-272.
89. Pourcho, RG, P. Qin, and DJ Goebel, Cellular and subcellular distribution of NMDA receptor subunit NR2B in the retina. J Comp Neurol, 2001. 433 (1): p. 75-85. [ PubMed ]
90. Wenzel, A., et al., N-methyl-D-aspartate receptors containing the NR2D subunit in the retina are selectively expressed in rod bipolar cells. Neuroscience, 1997. 78 (4): p. 1105-12. [ PubMed ]
91. Brandstatter, JH, et al., Expression of NMDA and high-affinity kainate receptor subunit mRNAs in the adult rat retina. Eur J Neurosci, 1994. 6 (7): p. 1100-12.
92. DeVries, SH, Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron, 2000. 28 (3): p. 847-56. [ PubMed ]
93. DeVries, SH and EA Schwartz, Kainate receptors mediate synaptic transmission between cones and 'Off' bipolar cells in a mammalian retina. Nature, 1999. 397 (6715): p. 157-60. [ PubMed ]
94. Paternain, AV, M. Morales, and J. Lerma, Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron, 1995. 14 (1): p. 185-9. [ PubMed ]
95. Jones, KA, et al., Desensitization of kainate receptors by kainate, glutamate and diastereomers of 4-methylglutamate. Neuropharmacology, 1997. 36 (6): p. 853-63. [ PubMed ]
96. Maple, BR, F. Gao, and SM Wu, Glutamate receptors differ in rod- and cone-dominated off-center bipolar cells. Neuroreport, 1999. 10 (17): p. 3605-10. [ PubMed ]
97. Wesolowska, A., R. Nelson, and V. Connaughton, Glutamate Mechanisms Involved in the OFF Pathway of Zebrafish Retina. Invest. Ophthalmol. Vis. Sci., 2002. 43 (12): p. E-abstract 1826.
98. Kim, HG and RF Miller, Properties of synaptic transmission from photoreceptors to bipolar cells in the mudpuppy retina. J Neurophysiol, 1993. 69 (2): p. 352-60. [ PubMed ]
99. Famiglietti, EV, Jr. and H. Kolb, Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science, 1976. 194 (4261): p. 193-5. [ PubMed ]
100. Nelson, R., EV Famiglietti Jr., and H. Kolb, Intracellular staining reveals different levels of stratification for on- and off-center ganglion cells in the cat retina. J. Neurophysiol., 1978. 41 (2): p. 472-483. [ PubMed ]
101. Amthor, FR, ES Takahashi, and CW Oyster, Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J Comp Neurol, 1989. 280 (1): p. 72-96. [ PubMed ]
102. Bloomfield, SA and RF Miller, A functional organization of ON and OFF pathways in the rabbit retina. J Neurosci, 1986. 6 (1): p. 1-13. [ PubMed ]
103. Ammermüller, J. and H. Kolb, The organization of the turtle inner retina. I. ON- and OFF-center pathways. J Comp Neurol, 1995. 358 (1): p. 1-34. [ PubMed ]
104. Cohen, E. and P. Sterling, Microcircuitry related to the receptive field center of the on-beta ganglion cell. J Neurophysiol, 1991. 65 (2): p. 352-9. [ PubMed ]
105. Kolb, H., The inner plexiform layer in the retina of the cat: electron microscopic observations. J Neurocytol, 1979. 8 (3): p. 295-329. [ PubMed ]
106. Kolb, H. and L. Dekorver, Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. J Comp Neurol, 1991. 303 (4): p. 617-36. [ PubMed ]
107. Kolb, H. and R. Nelson, OFF-alpha and OFF-beta ganglion cells in cat retina: II. Neural circuitry as revealed by electron microscopy of HRP stains. J Comp Neurol, 1993. 329 (1): p. 85-110. [ PubMed ]
108. McGuire, BA, JK Stevens, and P. Sterling, Microcircuitry of bipolar cells in cat retina. J Neurosci, 1984. 4 (12): p. 2920-38. [ PubMed ]
109. Nelson, R. and H. Kolb, Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res, 1983. 23 (10): p. 1183-95. [ PubMed ]
110. Dumitrescu, ON, et al., Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. J Comp Neurol, 2009. 517 (2): p. 226-44.
111. Grunert, U., et al., Bipolar input to melanopsin containing ganglion cells in primate retina. Vis Neurosci, 2011. 28 (1): p. 39-50.
112. Pang, JJ, F. Gao, and SM Wu, Stratum-by-stratum projection of light response attributes by retinal bipolar cells of Ambystoma. J Physiol, 2004. 558 (Pt 1): p. 249-62.
113. Ghosh, KK, et al., Types of bipolar cells in the mouse retina. J Comp Neurol, 2004. 469 (1): p. 70-82.
114. Dacey, DM and BB Lee, The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature, 1994. 367 (6465): p. 731-5. [ PubMed ]
115. Famiglietti, EV, Jr., A. Kaneko, and M. Tachibana, Neuronal architecture of on and off pathways to ganglion cells in carp retina. Science, 1977. 198 (4323): p. 1267-9. [ PubMed ]
116. Li, YN and JE Dowling, Specificity in the Bipolar Cell-Photoreceptor Connections in the Zebrafish Retina. ARVO Meeting Abstracts, 2010. 51 (5): p. 4125.
117. Li, YN, et al., Bipolar Cell-Photoreceptor Connections in the Zebrafish Retina. ARVO Meeting Abstracts, 2011. 52 (6): p. 2573.
118. Saito, T., et al., Reexamination of photoreceptor-bipolar connectivity patterns in carp retina: HRP-EM and Golgi-EM studies. J Comp Neurol, 1985. 236 (2): p. 141-60. [ PubMed ]
119. Kolb, H. and R. Nelson, Amacrine cells of the cat retina. Vision Res, 1981. 21 (11): p. 1625-33.
120. Mariani, A., Giant Bistratified Bipolar Cells in Monkey Retina. Anatomical Record, 1983. 206 (2): p. 215-220.
121. Wong, KY, ED Cohen, and JE Dowling, Retinal bipolar cell input mechanisms in giant danio. II. Patch-clamp analysis of on bipolar cells. J Neurophysiol, 2005. 93 (1): p. 94-107.
122. Cajal, S., The Structure of the retina. In: Thorpe SA, Glickstein M, translators (1972). 1892, Springfield: Thomas.
123. Dacheux, RF and E. Raviola, The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. J Neurosci, 1986. 6 (2): p. 331-45. [ PubMed ]
124. de la Villa, P., T. Kurahashi, and A. Kaneko, L-glutamate-induced responses and cGMP-activated channels in three subtypes of retinal bipolar cells dissociated from the cat. J Neurosci, 1995. 15 (5 Pt 1): p. 3571-82. [ PubMed ]
125. Sherry, DM and S. Yazulla, Goldfish bipolar cells and axon terminal patterns: a Golgi study. J Comp Neurol, 1993. 329 (2): p. 188-200. [ PubMed ]
126. Pang, JJ, et al., Direct rod input to cone BCs and direct cone input to rod BCs challenge the traditional view of mammalian BC circuitry. Proc Natl Acad Sci USA, 2010. 107 (1): p. 395-400.
127. Pang, JJ, F. Gao, and SM Wu, Light-evoked current responses in rod bipolar cells, cone depolarizing bipolar cells and AII amacrine cells in dark-adapted mouse retina. J Physiol, 2004. 558 (Pt 3): p. 897-912.
128. Greferath, U., U. Grunert, and H. Wässle, Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. J Comp Neurol, 1990. 301 (3): p. 433-42. [ PubMed ]
129. Kolb, H., L. Zhang, and L. Dekorver, Differential staining of neurons in the human retina with antibodies to protein kinase C isozymes. Vis Neurosci, 1993. 10 (2): p. 341-51. [ PubMed ]
130. Negishi, K., S. Kato, and T. Teranishi, Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neurosci Lett, 1988. 94 (3): p. 247-52. [ PubMed ]
131. Kolb, H. and EV Famiglietti, Rod and cone pathways in the inner plexiform layer of cat retina. Science, 1974. 186 (4158): p. 47-9. [ PubMed ]
132. Nelson, R., AII amacrine cells quicken time course of rod signals in the cat retina. J Neurophysiol, 1982. 47 (5): p. 928-47. [ PubMed ]
133. Mills, SL and SC Massey, Differential properties of two gap junctional pathways made by AII amacrine cells [see comments]. Nature, 1995. 377 (6551): p. 734-7.
134. Veruki, ML and E. Hartveit, Meclofenamic acid blocks electrical synapses of retinal AII amacrine and on-cone bipolar cells. J Neurophysiol, 2009. 101 (5): p. 2339-47.
135. Kolb, H., The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations. J Neurocytol, 1977. 6 (2): p. 131-53. [ PubMed ]
136. Nelson, R., Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J Comp Neurol, 1977. 172 (1): p. 109-35. [ PubMed ]
137. Raviola, E. and NB Gilula, Gap junctions between photoreceptor cells in the vertebrate retina. Proc Natl Acad Sci USA, 1973. 70 (6): p. 1677-81. [ PubMed ] [ Free Full text in PMC ]
138. Smith, RG, MA Freed, and P. Sterling, Microcircuitry of the dark-adapted cat retina: functional architecture of the rod-cone network. J Neurosci, 1986. 6 (12): p. 3505-17. [ PubMed ]
139. Tsukamoto, Y., et al., Microcircuits for night vision in mouse retina. J Neurosci, 2001. 21 (21): p. 8616-23. [ PubMed ]
140. Lasansky, A., Organization of the outer synaptic layer in the retina of the larval tiger salamander. Philos Trans R Soc Lond B Biol Sci, 1973. 265 (872): p. 471-89. [ PubMed ]
141. Stell, WK, AT Ishida, and DO Lightfoot, Structural basis for on-and off-center responses in retinal bipolar cells. Science, 1977. 198 (4323): p. 1269-71. [ PubMed ]
142. Hack, I. and L. Peichl, Horizontal cells of the rabbit retina are non-selectively connected to the cones. Eur J Neurosci, 1999. 11 (7): p. 2261-74.
143. Li, W., S. Chen, and SH DeVries, A fast rod photoreceptor signaling pathway in the mammalian retina. Nat Neurosci, 2010. 13 (4): p. 414-6.
144. Tsukamoto, Y., et al., A novel connection between rods and ON cone bipolar cells revealed by ectopic metabotropic glutamate receptor 7 (mGluR7) in mGluR6-deficient mouse retinas. J Neurosci, 2007. 27 (23): p. 6261-7.
145. Sharpe, LT and A. Stockman, Rod pathways: the importance of seeing nothing. Trends Neurosci, 1999. 22 (11): p. 497-504.
146. Connaughton, VP and G. Maguire, Differential expression of voltage-gated K + and Ca 2+ currents in bipolar cells in the zebrafish retinal slice. Eur J Neurosci, 1998. 10 (4): p. 1350-62. [ PubMed ]
147. Karschin, A. and H. Wässle, Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. J Neurophysiol, 1990. 63 (4): p. 860-76. [ PubMed ]
148. Lasater, EM, Membrane currents of retinal bipolar cells in culture. J Neurophysiol, 1988. 60 (4): p. 1460-80. [ PubMed ]
149. Pan, ZH and HJ Hu, Voltage-dependent Na + currents in mammalian retinal cone bipolar cells. J Neurophysiol, 2000. 84 (5): p. 2564-71. [ PubMed ]
150. Ma, YP, J. Cui, and ZH Pan, Heterogeneous expression of voltage-dependent Na + and K + channels in mammalian retinal bipolar cells. Vis Neurosci, 2005. 22 (2): p. 119-33.
151. Cui, J. and ZH Pan, Two types of cone bipolar cells express voltage-gated Na+ channels in the rat retina. Vis Neurosci, 2008. 25 (5-6): p. 635-45.
152. Zenisek, D., et al., Voltage-dependent sodium channels are expressed in nonspiking retinal bipolar neurons. J Neurosci, 2001. 21 (13): p. 4543-50. [ PubMed ]
153. Protti, DA and I. Llano, Calcium currents and calcium signaling in rod bipolar cells of rat retinal slices. J Neurosci, 1998. 18 (10): p. 3715-24. [ PubMed ]
154. Zenisek, D. and G. Matthews, Calcium action potentials in retinal bipolar neurons. Vis Neurosci, 1998. 15 (1): p. 69-75. [ PubMed ]
155. Heidelberger, R. and G. Matthews, Calcium influx and calcium current in single synaptic terminals of goldfish retinal bipolar neurons. J Physiol, 1992. 447 : p. 235-56. [ PubMed ] [ Free Full text in PMC ]
156. Kaneko, A., et al., Membrane currents and pharmacology of retinal bipolar cells: a comparative study on goldfish and mouse. Comp Biochem Physiol C, 1991. 98 (1): p. 115-27. [ PubMed ]
157. Kaneko, A., LH Pinto, and M. Tachibana, Transient calcium current of retinal bipolar cells of the mouse. J Physiol, 1989. 410 : p. 613-29. [ PubMed ] [ Free Full text in PMC ]
158. Maguire, G., et al., Gamma-aminobutyrate type B receptor modulation of L-type calcium channel current at bipolar cell terminals in the retina of the tiger salamander. Proc Natl Acad Sci USA, 1989. 86 (24): p. 10144-7. [ PubMed ] [ Free Full text in PMC ]
159. Kaneko, A. and M. Tachibana, A voltage-clamp analysis of membrane currents in solitary bipolar cells dissociated from Carassius auratus. J Physiol, 1985. 358 : p. 131-52. [ PubMed ] [ Free Full text in PMC ]
160. Fan, SF and S. Yazulla, Dopamine depletion with 6-OHDA enhances dopamine D1-receptor modulation of potassium currents in retinal bipolar cells. Vis Neurosci, 2001. 18 (2): p. 327-37. [ PubMed ]
161. Tessier-Lavigne, M., et al., Membrane currents in retinal bipolar cells of the axolotl. J Gen Physiol, 1988. 91 (1): p. 49-72. [ PubMed ]
162. Kamermans, M., et al., Hemichannel-mediated inhibition in the outer retina. Science, 2001. 292 (5519): p. 1178-80. [ PubMed ]
163. Vardi, N., et al., Evidence that different cation chloride cotransporters in retinal neurons allow opposite responses to GABA. J Neurosci, 2000. 20 (20): p. 7657-63. [ PubMed ]
164. Thoreson, WB and RF Miller, Membrane currents evoked by excitatory amino acid agonists in ON bipolar cells of the mudpuppy retina. J Neurophysiol, 1993. 70 (4): p. 1326-38. [ PubMed ]
165. Connaughton, VP, et al., Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Vis Neurosci, 1999. 16 (3): p. 483-90. [ PubMed ]
166. Freed, MA, Y. Nakamura, and P. Sterling, Four types of amacrine in the cat retina that accumulate GABA. J Comp Neurol, 1983. 219 (3): p. 295-304. [ PubMed ]
167. Freed, MA, RG Smith, and P. Sterling, Rod bipolar array in the cat retina: pattern of input from rods and GABA-accumulating amacrine cells. J Comp Neurol, 1987. 266 (3): p. 445-55. [ PubMed ]
168. Marc, RE and W. Liu, Fundamental GABAergic amacrine cell circuitries in the retina: nested feedback, concatenated inhibition, and axosomatic synapses. J Comp Neurol, 2000. 425 (4): p. 560-82. [ PubMed ]
169. Marc, RE, et al., GABA-ergic pathways in the goldfish retina. J Comp Neurol, 1978. 182 (2): p. 221-44. [ PubMed ]
170. Pourcho, RG and DJ Goebel, Neuronal subpopulations in cat retina which accumulate the GABA agonist, ( 3 H)muscimol: a combined Golgi and autoradiographic study. J Comp Neurol, 1983. 219 (1): p. 25-35. [ PubMed ]
171. Connaughton, VP, R. Nelson, and AM Bender, Electrophysiological evidence of GABA A and GABA C receptors on zebrafish retinal bipolar cells. Vis Neurosci, 2008. 25 (2): p. 139-53.
172. Lukasiewicz, PD, BR Maple, and FS Werblin, A novel GABA receptor on bipolar cell terminals in the tiger salamander retina. J Neurosci, 1994. 14 (3 Pt 1): p. 1202-12. [ PubMed ]
173. Tachibana, M. and A. Kaneko, gamma-Aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proc Natl Acad Sci USA, 1987. 84 (10): p. 3501-5. [ PubMed ] [ Free Full text in PMC ]
174. Tachibana, M. and A. Kaneko, Retinal bipolar cells receive negative feedback input from GABAergic amacrine cells. Vis Neurosci, 1988. 1 (3): p. 297-305. [ PubMed ]
175. Lukasiewicz, PD and FS Werblin, A novel GABA receptor modulates synaptic transmission from bipolar to ganglion and amacrine cells in the tiger salamander retina. J Neurosci, 1994. 14 (3 Pt 1): p. 1213-23. [ PubMed ]
176. Burkhardt, DA, Responses and receptive-field organization of cones in perch retinas. J Neurophysiol, 1977. 40 (1): p. 53-62. [ PubMed ]
177. Kondo, H. and J. Toyoda, GABA and glycine effects on the bipolar cells of the carp retina. Vision Res, 1983. 23 (11): p. 1259-64. [ PubMed ]
178. Wu, SM, Effects of gamma-aminobutyric acid on cones and bipolar cells of the tiger salamander retina. Brain Res, 1986. 365 (1): p. 70-7. [ PubMed ]
179. Wu, SM and BR Maple, Amino acid neurotransmitters in the retina: a functional overview. Vision Res, 1998. 38 (10): p. 1371-84. [ PubMed ]
180. Feigenspan, A., H. Wässle, and J. Bormann, Pharmacology of GABA receptor Cl - channels in rat retinal bipolar cells. Nature, 1993. 361 (6408): p. 159-62.
181. Lukasiewicz, PD and CR Shields, Different combinations of GABA A and GABA C receptors confer distinct temporal properties to retinal synaptic responses. J Neurophysiol, 1998. 79 (6): p. 3157-67. [ PubMed ]
182. Lukasiewicz, PD and CR Shields, A diversity of GABA receptors in the retina. Semin Cell Dev Biol, 1998. 9 (3): p. 293-9. [ PubMed ]
183. Lukasiewicz, PD and RO Wong, GABA C receptors on ferret retinal bipolar cells: a diversity of subtypes in mammals? Vis Neurosci, 1997. 14 (5): p. 989-94. [ PubMed ]
184. McGillem, GS, TC Rotolo, and RF Dacheux, GABA responses of rod bipolar cells in rabbit retinal slices. Vis Neurosci, 2000. 17 (3): p. 381-9. [ PubMed ]
185. Qian, H. and JE Dowling, Novel GABA responses from rod-driven retinal horizontal cells. Nature, 1993. 361 (6408): p. 162-4. [ PubMed ]
186. Qian, H. and JE Dowling, GABA A and GABA C receptors on hybrid bass retinal bipolar cells. J Neurophysiol, 1995. 74 (5): p. 1920-8. [ PubMed ]
187. Vaquero, CF and P. de la Villa, Localisation of the GABA C receptors at the axon terminal of the rod bipolar cells of the mouse retina. Neurosci Res, 1999. 35 (1): p. 1-7. [ PubMed ]
188. Nelson, R., VP Connaughton, and AE Schaffner, Voltage probe measurements of glutamate responses form acutely dissociated zebrafish retinal neurons. Invest Ophthalmol Vis Sci, 1999. 40 : p. S242.
189. Eggers, ED and PD Lukasiewicz, GABA A , GABA C and glycine receptor-mediated inhibition differentially affects light-evoked signalling from mouse retinal rod bipolar cells. J Physiol, 2006. 572 (Pt 1): p. 215-25.
190. Heidelberger, R. and G. Matthews, Inhibition of calcium influx and calcium current by gamma-aminobutyric acid in single synaptic terminals. Proc Natl Acad Sci USA, 1991. 88 (16): p. 7135-9. [ PubMed ] [ Free Full text in PMC ]
191. Eggers, ED and PD Lukasiewicz, Receptor and transmitter release properties set the time course of retinal inhibition. J Neurosci, 2006. 26 (37): p. 9413-25.
192. Frumkes, TE and R. Nelson, Functional role of GABA in cat retina: I. Effects of GABA A agonists. Vis Neurosci, 1995. 12 (4): p. 641-50. [ PubMed ]
193. Frumkes, TE, R. Nelson, and R. Pflug, Functional role of GABA in cat retina: II. Effects of GABA A antagonists. Vis Neurosci, 1995. 12 (4): p. 651-61. [ PubMed ]
194. Freed, MA, GABAergic circuits in the mammalian retina , in GABA in the retina and central visual system . 1992, Elsevier: Amsterdam.
195. Zhang, DQ and XL Yang, OFF pathway is preferentially suppressed by the activation of GABA(A) receptors in carp retina. Brain Res, 1997. 759 (1): p. 160-2.
196. Matthews, G., GS Ayoub, and R. Heidelberger, Presynaptic inhibition by GABA is mediated via two distinct GABA receptors with novel pharmacology. J Neurosci, 1994. 14 (3 Pt 1): p. 1079-90. [ PubMed ]
197. Mack, AF, UD Behrens, and HJ Wagner, Inhibitory control of synaptic activity in goldfish Mb bipolar cell terminals visualized by FM1-43. Vis Neurosci, 2000. 17 (6): p. 823-9. [ PubMed ]
198. Pang, JJ, F. Gao, and SM Wu, Relative contributions of bipolar cell and amacrine cell inputs to light responses of ON, OFF and ON-OFF retinal ganglion cells. Vision Res, 2002. 42 (1): p. 19-27. [ PubMed ]
199. Singer, JH and JS Diamond, Sustained Ca 2+ entry elicits transient postsynaptic currents at a retinal ribbon synapse. J Neurosci, 2003. 23 (34): p. 10923-33.
200. Chavez, AE, WN Grimes, and JS Diamond, Mechanisms underlying lateral GABAergic feedback onto rod bipolar cells in rat retina. J Neurosci, 2010. 30 (6): p. 2330-9.
201. Chavez, AE, JH Singer, and JS Diamond, Fast neurotransmitter release triggered by Ca influx through AMPA-type glutamate receptors. Nature, 2006. 443 (7112): p. 705-8.
202. Suzuki, S., M. Tachibana, and A. Kaneko, Effects of glycine and GABA on isolated bipolar cells of the mouse retina. J Physiol, 1990. 421 : p. 645-62. [ PubMed ] [ Free Full text in PMC ]
203. Maple, BR and SM Wu, Glycinergic synaptic inputs to bipolar cells in the salamander retina. J Physiol, 1998. 506 ( Pt 3) : p. 731-44. [ PubMed ]
204. Cunningham, R. and RF Miller, Electrophysiological analysis of taurine and glycine action on neurons of the midpuppy retina. I. Intracellular recording. Brain Res, 1980. 197 (1): p. 123-38. [ PubMed ]
205. Műller, F., H. Wässle, and T. Voigt, Pharmacological modulation of the rod pathway in the cat retina. J Neurophysiol, 1988. 59 (6): p. 1657-72. [ PubMed ]
206. Pourcho, RG and DJ Goebel, A combined Golgi and autoradiographic study of ( 3 H)glycine-accumulating amacrine cells in the cat retina. J Comp Neurol, 1985. 233 (4): p. 473-80. [ PubMed ]
207. Wässle, H., I. Schafer-Trenkler, and T. Voigt, Analysis of a glycinergic inhibitory pathway in the cat retina. J Neurosci, 1986. 6 (2): p. 594-604. [ PubMed ]
208. Eggers, ED and PD Lukasiewicz, Multiple pathways of inhibition shape bipolar cell responses in the retina. Vis Neurosci, 2011. 28 (1): p. 95-108.
209. Chavez, AE and JS Diamond, Diverse mechanisms underlie glycinergic feedback transmission onto rod bipolar cells in rat retina. J Neurosci, 2008. 28 (31): p. 7919-28.
210. Du, JL and XL Yang, Glycinergic synaptic transmission to bullfrog retinal bipolar cells is input-specific. Neuroscience, 2002. 113 (4): p. 779-84. [ PubMed ]
211. Smiley, JF and S. Yazulla, Glycinergic contacts in the outer plexiform layer of the Xenopus laevis retina characterized by antibodies to glycine, GABA and glycine receptors. J Comp Neurol, 1990. 299 (3): p. 375-88. [ PubMed ]
212. Stone, S. and M. Schutte, Physiological and morphological properties of off- and on-center bipolar cells in the Xenopus retina: effects of glycine and GABA. Vis Neurosci, 1991. 7 (4): p. 363-76. [ PubMed ]
213. Hare, WA and WG Owen, Receptive field of the retinal bipolar cell: a pharmacological study in the tiger salamander. J Neurophysiol, 1996. 76 (3): p. 2005-19. [ PubMed ]
214. Qian, H., et al., Responses of small- and large-field bipolar cells to GABA and glycine. Brain Res, 2001. 893 (1-2): p. 273-7. [ PubMed ]
215. Merighi, A., E. Raviola, and RF Dacheux, Connections of two types of flat cone bipolars in the rabbit retina. J Comp Neurol, 1996. 371 (1): p. 164-78. [ PubMed ]
216. von Gersdorff, H., et al., Evidence that vesicles on the synaptic ribbon of retinal bipolar neurons can be rapidly released. Neuron, 1996. 16 (6): p. 1221-7. [ PubMed ]
217. Lagnado, L., A. Gomis, and C. Job, Continuous vesicle cycling in the synaptic terminal of retinal bipolar cells. Neuron, 1996. 17 (5): p. 957-67. [ PubMed ]
218. Zenisek, D., JA Steyer, and W. Almers, Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature, 2000. 406 (6798): p. 849-54. [ PubMed ]
219. Dowling, JE, The retina: an approachable part of the brain. 1987, Cambridge (MA): Belknap Press of Harvard University Press.
220. Dowling, JE and BB Boycott, Organization of the primate retina: electron microscopy. Proc R Soc Lond B Biol Sci, 1966. 166 (2): p. 80-111. [ PubMed ]
221. Miller, RF, et al., Pre- and postsynaptic mechanisms of spontaneous, excitatory postsynaptic currents in the salamander retina. Prog Brain Res, 2001. 131 : p. 241-53.
222. Wong-Riley, MT, Synaptic orgnization of the inner plexiform layer in the retina of the tiger salamander. J Neurocytol, 1974. 3 (1): p. 1-33.
223. Gottesman, J. and RF Miller, Pharmacological properties of N-methyl-D-aspartate receptors on ganglion cells of an amphibian retina. J Neurophysiol, 1992. 68 (2): p. 596-604. [ PubMed ]
224. Heidelberger, R. and G. Matthews, Dopamine enhances Ca 2+ responses in synaptic terminals of retinal bipolar neurons. Neuroreport, 1994. 5 (6): p. 729-32.
225. Morgans, CW, Neurotransmitter release at ribbon synapses in the retina. Immunol Cell Biol, 2000. 78 (4): p. 442-6. [ PubMed ]
226. von Gersdorff, H. and G. Matthews, Inhibition of endocytosis by elevated internal calcium in a synaptic terminal. Nature, 1994. 370 (6491): p. 652-5.
227. Neves, G., A. Neef, and L. Lagnado, The actions of barium and strontium on exocytosis and endocytosis in the synaptic terminal of goldfish bipolar cells. J Physiol, 2001. 535 (Pt 3): p. 809-24. [ PubMed ]
228. Pan, ZH, Voltage-activated Ca 2+ channels and ionotropic GABA receptors localized at axon terminals of mammalian retinal bipolar cells. Vis Neurosci, 2001. 18 (2): p. 279-88.
229. Burrone, J. and L. Lagnado, Synaptic depression and the kinetics of exocytosis in retinal bipolar cells. J Neurosci, 2000. 20 (2): p. 568-78. [ PubMed ]
230. Mennerick, S. and G. Matthews, Ultrafast exocytosis elicited by calcium current in synaptic terminals of retinal bipolar neurons. Neuron, 1996. 17 (6): p. 1241-9. [ PubMed ]
231. von Gersdorff, H. and G. Matthews, Depletion and replenishment of vesicle pools at a ribbon-type synaptic terminal. J Neurosci, 1997. 17 (6): p. 1919-27. [ PubMed ]
232. Rouze, NC and EA Schwartz, Continuous and transient vesicle cycling at a ribbon synapse. J Neurosci, 1998. 18 (21): p. 8614-24. [ PubMed ]
233. Veruki, ML, SH Morkve, and E. Hartveit, Functional properties of spontaneous EPSCs and non-NMDA receptors in rod amacrine (AII) cells in the rat retina. J Physiol, 2003. 549 (Pt 3): p. 759-74.
234. Singer, JH, et al., Coordinated multivesicular release at a mammalian ribbon synapse. Nat Neurosci, 2004. 7 (8): p. 826-33.
235. Singer, JH and JS Diamond, Vesicle depletion and synaptic depression at a mammalian ribbon synapse. J Neurophysiol, 2006. 95 (5): p. 3191-8.
236. Pinto, LH, et al., Generation, identification and functional characterization of the nob4 mutation of Grm6 in the mouse. Vis Neurosci, 2007. 24(1): p. 111-23. [ PubMed ]
237. Takao, M., et al., Impaired behavioral suppression by light in metabotropic glutamate receptor subtype 6-deficient mice. Neuroscience, 2000. 97 (4): p. 779-87. [ PubMed ]
238. Thompson, S., et al., Different inner retinal pathways mediate rod-cone input in irradiance detection for the pupillary light reflex and regulation of behavioral state in mice. Invest Ophthalmol Vis Sci, 2011. 52(1): p. 618-23. [ PubMed ]
239. Iwakabe, H., et al., Impairment of pupillary responses and optokinetic nystagmus in the mGluR6-deficient mouse. Neuropharmacology, 1997. 36 (2): p. 135-43. [ PubMed ]
240. Tagawa, Y., et al., Immunohistological studies of metabotropic glutamate receptor subtype 6-deficient mice show no abnormality of retinal cell organization and ganglion cell maturation. J Neurosci, 1999. 19 (7): p. 2568-79. [ PubMed ]
241. Berson, EL and S. Lessell, Paraneoplastic night blindness with malignant melanoma. Am J Ophthalmol, 1988. 106 (3): p. 307-11. [ PubMed ]
242. Ripps, H., Night blindness revisited: from man to molecules. Proctor lecture. Invest Ophthalmol Vis Sci, 1982. 23 (5): p. 588-609. [ PubMed ]
243. Alexander, KR, et al., 'On' response defect in paraneoplastic night blindness with cutaneous malignant melanoma. Invest Ophthalmol Vis Sci, 1992. 33 (3): p. 477-83. [ PubMed ]
244. Alexander, KR, et al., Contrast-processing deficits in melanoma-associated retinopathy. Invest Ophthalmol Vis Sci, 2004. 45 (1): p. 305-10.
245. Lei, B., et al., Human melanoma-associated retinopathy (MAR) antibodies alter the retinal ON-response of the monkey ERG in vivo. Invest Ophthalmol Vis Sci, 2000. 41 (1): p. 262-6. [ PubMed ]
246. Dhingra, A., et al., Autoantibodies in melanoma-associated retinopathy target TRPM1 cation channels of retinal ON bipolar cells. J Neurosci, 2011. 31 (11): p. 3962-7.
247. Kondo, M., et al., Identification of autoantibodies against TRPM1 in patients with paraneoplastic retinopathy associated with ON bipolar cell dysfunction. PLoS One, 2011. 6 (5): p. e19911.
248. Schubert, G. and H. Bornschein, [Analysis of the human electroretinogram]. Ophthalmologica, 1952. 123 (6): p. 396-413. [ PubMed ]
249. Goodman, G. and H. Bornschein, Comparative electroretinographic studies in congenital night blindness and total color blindness. AMA Arch Ophthalmol, 1957. 58 (2): p. 174-82. [ PubMed ]
250. Miyake, Y., et al., Congenital stationary night blindness with negative electroretinogram. A new classification. Arch Ophthalmol, 1986. 104 (7): p. 1013-20. [ PubMed ]
251. Miyake, Y., [Establishment of the concept of new clinical entities–complete and incomplete form of congenital stationary night blindness]. Nihon Ganka Gakkai Zasshi, 2002. 106 (12): p. 737-55; discussion 756.
252. Bech-Hansen, NT, et al., Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness. Nat Genet, 2000. 26 (3): p. 319-23. [ PubMed ]
253. Bech-Hansen, NT, et al., Loss-of-function mutations in a calcium-channel alpha1-subunit gene in Xp11.23 cause incomplete X-linked congenital stationary night blindness. Nat Genet, 1998. 19 (3): p. 264-7. [ PubMed ]
254. Zeitz, C., et al., Mutations in GRM6 cause autosomal recessive congenital stationary night blindness with a distinctive scotopic 15-Hz flicker electroretinogram. Invest Ophthalmol Vis Sci, 2005. 46 (11): p. 4328-35.
255. Schiller, PH, Central connections of the retinal ON and OFF pathways. Nature, 1982. 297 (5867): p. 580-3. [ PubMed ]
256. Schiller, PH, The connections of the retinal on and off pathways to the lateral geniculate nucleus of the monkey. Vision Res, 1984. 24 (9): p. 923-32. [ PubMed ]
257. Knapp, AG and LA Mistler, Response properties of cells in rabbit's lateral geniculate nucleus during reversible blockade of retinal on-center channel. J Neurophysiol, 1983. 50 (5): p. 1236-45. [ PubMed ]
258. Cleland, BG, MW Dubin, and WR Levick, Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J Physiol, 1971. 217 (2): p. 473-96.
259. Dolan, RP and PH Schiller, Effects of ON channel blockade with 2-amino-4-phosphonobutyrate (APB) on brightness and contrast perception in monkeys. Vis Neurosci, 1994. 11 (1): p. 23-32. [ PubMed ]
260. Dolan, RP and PH Schiller, Evidence for only depolarizing rod bipolar cells in the primate retina. Vis Neurosci, 1989. 2 (5): p. 421-4. [ PubMed ]
261. Qin, P. and RG Pourcho, Localization of AMPA-selective glutamate receptor subunits in the cat retina: a light- and electron-microscopic study. Vis Neurosci, 1999. 16 (1): p. 169-77.
هیچ نظری موجود نیست:
ارسال یک نظر
توجه:فقط اعضای این وبلاگ میتوانند نظر خود را ارسال کنند.