Serotonin Neurons & pH Homeostasis
Medullary serotonergic neurons are sensors for CO2 and pH.


Serotonergic neurons in the medulla are also closely associated with large branches of the basilar artery (Figure 3). This is an ideal location for central respiratory chemoreceptors, because the CO2 of blood in these large arteries would not yet have been altered by tissue metabolism, so that the CO2 of blood in these large arteries would more closely reflect the effectiveness of lung ventilation than the CO2 of blood in capillaries or veins.

Our current work is aimed at studying the properties of serotonergic neurons to understand how they carry out their function as central chemoreceptors. To define these properties and their mechanisms we are using a combination of patch clamp recordings from brain slices and tissue culture, multielectrode array recordings, intracellular pH imaging, immunohistochemistry, and molecular biology. Our major goals are to define the mechanisms of pH chemosensitivity and how serotonergic neurons modulate downstream neurons in response to acidosis.
Midbrain serotonergic neurons are also sensors for CO2 and pH


Do serotonergic neurons throughout the brainstem share a role as CO2 / pH sensors?

Serotonin and human disease
There are many human diseases that are linked to serotonin. These include sleep apnea, panic disorder, epilepsy, migraine, and SIDS. Interestingly, each of these disorders are also affected by CO2, or related to defects in CO2 chemoreception. Perhaps the most exciting link is with SIDS (sudden infant death syndrome). Scientists at Harvard and Dartmouth led by Hannah Kinney, have shown that there are abnormalities in the serotonin system of infants who have died of SIDS. A leading hypothesis for the pathophysiology of SIDS has been that there are maturational defects of the brainstem in these infants that lead to abnormalities of CO2 chemoreception, breathing and arousal. This is interesting, because if serotonergic neurons are central chemoreceptor neurons that induce arousal and increased breathing, a defect in them would be expected to cause precisely the problem thought to occur in SIDS victims, i.e., blunting of the reflex hyperventilation and arousal that occurs in response to hypercapnia during sleep. We have initiated a collaboration with these scientists to better understand the mechanisms by which a defect in serotonergic neurons might lead to SIDS.The overall goal of our lab is to determine the mechanisms by which serotonergic neurons sense changes in CO2, and how their downstream effects contribute to control of pH. Defining the mechanisms of central respiratory chemoreception may lead to specific treatments for diseases in which respiratory chemoreception is abnormal and provide a better understanding of how CO2 and pH affect CNS function.
For more detailed information about the work described here, please see our published papers and reviews in our list of publications.